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Abstract-In this paper the line spring model originally developed to treat the surface crack
problems in homogeneous plates is extended to laminates which may consist of bonded isotropic
or orthotropic dissimilar elastic layers. By using the two fundamental solutions for a laminate with
a through crack and the corresponding plane strain problem for an edge crack, the surface crack
problem in laminates is reduced to a system of singular integral equations. Sample results showing
the stress intensity factors are given for bonded orthotropi.: and isotropic layers which correspond
to fiber-reinforced structural composites and ceramic-coated metal substrates, respectively.

1. INTRODUCTION

In structural components which can locally be represented by a "plate" or a "shell" and
which are subjected to a combination ofmembrane and bending loads, generally the failure
process would start from a small flaw on the surface. Under cyclic loading and/or corrosion,
the flaw may grow into a macroscopic surface crack. In homogeneous materials the surface
crack would usually grow through the entire thickness before the final stages of failure of
the component. Such subcritical crack growth processes can be monitored analytically and,
consequently some statement about the service life of the component can be made, provided
the surface crack solutions for the corresponding crack geometries and the baseline data
for the subcritical crack propagation in the material are available (Joseph and Erdogan,
1989). The surface crack problem involved is a three-dimensional elasticity problem in
which the stress field perturbed by the crack interacts very strongly with the surfaces of the
component. Even in homogeneous isotropic plates the problem is much too complex to be
analytically tractable. Therefore, most of the available solutions of the problem heavily rely
on some kind of numerical technique such as, for example, finite elements (Newman and
Raju, 1979), the alternating methods (Shah and Kobayashi, 1972; Smith and Sorensen,
1976), the boundary integral method (Heliot et al., 1979; Nishioka and Atluri, 1982), the
method of weight functions (Mattheck et aI., 1985), and the body force method (Isida et
aI., 1984) [for reviews see Newmann (1978) and Scott and Thorpe (l981)]. However, it has
also been shown that representing the medium by a "plate" or a "shell", using the concept
of the "line spring model" (Rice and Levy, 1972), and by using a plate theory that accounts
for transverse shear deformations, it is possible to obtain a reasonably accurate solution to
the surface crack problem in plates and shells [see, for example, Joseph and Erdogan (l989)
for comparison with existing finite element solutions]. In the analytical studies dealing with
surface cracks for simplicity it was assumed that the plate is infinitely large. The problem
of a plate with finite width containing coplanar surface cracks, including corner cracks,
and subjected to remote membrane loading or bending was considered by Erdogan and
Boduroglu (l984).

Up to now all existing solutions of the surface crack problems have been for homo
geneous plates and shells. With the applications to composite structures and microelectronic
devices and packages in mind, the primary objective of this series of papers has been to
study the fracture mechanics oflaminated plates which consist ofbonded orthotropic layers.
In this area the two physically important problems that need to be investigated are the
subcritical propagation of surface cracks and the process ofdebonding. Only the former is
addressed in this study. As indicated previously, the line spring model along with a shear
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deformation plate theory provides a relatively simple and effective technique for solving
the surface crack problem in homogeneous and isotropic plates and shells. The effect of
material orthotropy in homogeneous plates was considered by Wu and Erdogan (1989).
The technique was extended to the case of plates containing multiple surface or embedded
cracks by Erdogan and Aksel (1988). In this paper the problem of a surface crack in
laminated orthotropic plates is considered. The two fundamental problems necessary for
the application of the line spring model were discussed in Parts I and II of this paper. These
were the through crack problem in orthotropic laminates under membrane and bending
loads and the edge crack problem in bonded orthotropic layers under plane strain
conditions. As explained in Part II, in this paper, too, the analysis will be confined to plates
that consist of only two layers. If the laminates contain more than two layers, then it is
assumed that the two parts of the plate on either side of the interface of primary interest
are properly homogenized as separate orthotropic layers.

2. THE LINE SPRING MODEL

In a relatively thin-walled plate or shell structure containing a surface crack and
subjected to membrane and bending loads, the "net ligament" around the part-through
crack would generally have a constraining effect on the crack surface displacements. Thus,
the basic idea underlying the line spring model consists of approximating the inherently
three-dimensional surface crack problem by a two-dimensional coupled membrane-bending
plate or shell problem through the reduction of net ligament stresses [Fig. I (a)] to the
neutral surface of the plate or the shell as a membrane load N and a bending moment M
[Fig. I(b)] (Rice and Levy, 1972). The problem shown in Fig. I(a) is, thus, reduced to a plate
bending problem for a through crack described in Fig. l(b) with unknown membrane and
bending resultants Nand M acting on the crack surface. In the plate bending problem the
crack surface displacements are represented by a crack opening displacement J and a crack
surface rotation 8 measured, again, at the neutral surface. Note that the quantities N, M,
J and 8 are all unknown and are functions of y only [Fig. I (b)]. In the coupled case the
mixed boundary value problem for a plate containing a through crack is formulated in
terms of a system of integral equations with, essentially, J(y) and 8(y) as the unknown
functions. In the current problem there are, however, two more unknown functions, N(y)
and M(y) which appear in the formulation as "crack surface tractions". that is as a
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Fig. 1. Geometry of the laminated plate with a surface crack; (a) the part-through crack, (b) the
line-spring approximation.
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(2)

component of the input functions. Therefore, aside from the integral equations, two more
relations between the complementary quantities (<5,0) and (N, M) are needed to complete
the formulation. These relations are obtained by using energy considerations.

As was the case in the bending problem of plates with a through crack, the early appli
cations of the line spring model, too, were based on the classical plate theory. Aside from
the motivation for obtaining more accurate results for the stress intensity factors, there
appear to be also conceptual reasons for using a higher order plate theory which can
accommodate all boundary conditions on the crack surfaces separately rather than lumping
the transverse shear resultant with the twisting moment. The asymptotic stress field around
the crack tip given by the classical plate bending theory is not consistent with continuum
elasticity results (with regard to the angular distribution ofstresses, dependence on Poisson's
ratio, and the power ofsingularity in transverse shear stresses), whereas a shear deformation
theory gives results which are identical to the asymptotic solutions obtained from the plane
strain and antiplane shear problems (Knowles and Wang, 1960; Yahsi and Erdogan, 1979).
The question of accuracy of the asymptotic results for very thin plates has been resolved
by determining the limit of the stress intensity factor analytically (Joseph and Erdogan,
199Ia).

Consider now the general membrane/bending problem for an orthotropic laminate
containing a through crack [Fig. I(b)]. The corresponding perturbation problem in which
the crack surface tractions are the only nonzero applied loads must be solved under the
following boundary conditions:

Nxy(O, y) = 0, Mxy(O, y) = 0, Qx(O, y) = 0, - 00 < y < 00, (I)

NxAO, y) = h/l (y), Iyl < a,

uo(O, y) = 0, - 00 < y < -a, a < y < 00,

MxAO, y) = (h 2/6)/2(y), Iyl < a,

t/JAO, y) = 0, -00 <y < -a, a <y < 00, (3)

where, in the usual notation, N;j' Mij and Q;, (i, j = x, y) are, respectively, the stress,
moment and transverse shear resultants, Uo is the in-plane component of the displacement
at the reference plane (in this case assumed to be the neutral plane), t/Jx is the rotation of
the normal to the neutral plane, and II and 12 are arbitrary crack surface tractions [see Wu
(1990) for details]. If we define

(4)

it was shown by Wu (1990) that, by using a first order shear deformation theory, the related
mixed boundary value problem may be reduced to a system of integral equations of the
form

2 fa [I J.lk' ],L -t_J +kkj(y,t) gj(t)dt=fk(y), k= 1,2,IYI <a,
J= I -a 11: y

subject to

where J.lkj are known material constants and the kernels kkj are known functions.

(5)

(6)
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In the perturbation problem simulating the part-through crack in a laminate subjected
to remote membrane loading N.n = No and bending Mxx = M o, the crack surface tractions
may be expressed as

hf,(y) = -No+N(y),

h 2

6 f2(Y) = -Mo+M(y), -a < y < a, (7)

where the assumption is that the resultants Nand M are statically equivalent to and
represent the net ligament stress axAO, y, z), ( - a < y < a, L(y) < z < h). Note that Nand
M tend to close the crack surfaces whereas the external loads No and M o tend to open
them. The second major assumption in developing the model is that the stress intensity factor
at a location y along the crack front may locally be approximated by the corresponding plane
strain value obtained from a laminate which contains an edge crack of depth L(y) and
which is subjected to uniform membrane loading N and bending moment M. This assump
tion makes it possible to express Nand M in terms of the displacement quantities 9 I and
92. In order to determine these relationships, the energy available for fracture along the
crack front is expressed in two different ways, namely as the crack closure energy and as
the product ofload and load point displacement. Thus, ifk I (y) is the mode I stress intensity
factor along the crack front, the strain energy release rate or the energy available for fracture
may be expressed as

(8)

where U is the work done by the external loads, V is the strain energy and for the plane
strain case under consideration the material constant J1.* is defined by

J1.* =! (dlld33)-1/2[(~)1/2+2d13 +d55J-I!2,
2 2 d 33 2d33

(9)

(10)

Cij, (i, j = 1,2, 3 or x, y, z), being the coefficients of the compliance matrix C (in s = ca) in
the orthotropic layer 1 which contains the crack (Wu, 1990, Fig. 1). Note that in isotropic
materials

(11)

The work done by Nand M through "load point displacements" do and dO (which
results from the crack growth dL) minus the strain energy stored, that is, the energy
available for fracture, may also be expressed as

Thus, from (12), (8) and

d(U- V) = !(Ndo+MdO). (12)
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o~ 00
d~ = oL dL, dO = oL dL,
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(13)

(14)

Referring to Part II of this study from the plane strain crack solution k 1 may be obtained
as

k I (b) = Jh[~9,(S) + h~6 9b(S)J. s = L/h.

Ifwe now define the matrices

(14) becomes

7th T h TOW

2Jl* T GT = 2T oL'

giving

(IS)

(16)

(17)

(18)

Observing that G is a function of s = L/h, T is independent of Land W = 0 for L = 0, from
(18) we find

h7t
W = .AT,

Jl

I jL I'
A =h Jo G(L/h) dL = Jo G(s) ds. (19)

From (16), (19) and (IS) it may now easily be seen that

where the matrix (IX/j) is given by

(20)

(21)

Note that IX/j are dimensionless and are functions of s = L(y)/h. Finally, by substituting
from (7) and (20) into (5) we obtain
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(23)

f
a [~~~ +k,,(y, t)]91(t)dt+fa [~J1.12 +kdy, t)]92(t)dt
-a nt-y -a nt-y

J1.* [IF h fY ] No-"ic'h 2alla91(t)dt+3aI2 _a 92 (t)dt = --h-' -a<y<a,

f
a [~. J1.21 +k2l (y,t)]91(t)dt+f

a

[~1l22 +k22 (y,t)]92(t)dt
-u nt-y -a nt-y

J1.* [fY h fY ] 6Mo-"ich 2a 21 _u 91 (t)dt+ 3 a22 _a 92 (t)dt =-7' -a<y<a. (22)

After determining 91 and 92 from (22), (20) gives N(y) and M(y) and kl(y) may be
obtained from (15).

The "shape functions" 9t and 9b defining the stress intensity factor in (15) are obtained
by solving the corresponding plane strain edge crack problem described in Part II of this
study and may be expressed as follows:

9t(S) =;-; ±atk l , 9b(S) = J~ ±ahkl , s = L/h.
k~O k~O

The solution of (22) is obtained by letting

9j(t) = Fi(t)/~a2 - t 2, j = 1,2,

and by following the procedure described in, for example, Erdogan (1978).

(24)

3. THE RESULTS AND DISCUSSION

The line spring model described in this paper is known to provide a relatively simple
approximation to the three-dimensional elasticity problem in a plate or a shell containing
a surface crack. Comparisons of the stress intensity factors obtained from the line spring
model and that given by the existing finite element solutions indicate that the differences
are rather insignificant. An example showing the calculated stress intensity factors in a
homogeneous isotropic plate containing a semi-elliptic surface crack oflength 2a and depth
L o (Fig. I) and subjected to remote tension or bending is given in Fig. 2. The results are
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Fig. 2. Comparison of the stress intensity factors in a homogeneous, isotropic plate with a semi
elliptic surface crack obtained from the finite element solution (Newman and Raju, 1979) and the
line spring model using the classical plate theory and the Reissner theory (Joseph and Erdogan,

1989), v = 0.3, alh = (2/3).
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obtained by Newman and Raju (1979) using a finite element method and by Joseph and
Erdogan (1989) the line spring model in conjunction with the classical plate theory and the
Reissner theory. The figure shows that the results of the shear deformation theory agree
rather well with the finite element solution. Further comparison of stress intensity factors
in homogeneous plates containing a part-through crack ofvarious geometries may be found
in Joseph and Erdogan (1989) and Erdogan and Aksel (1988) for mode I and in Joseph
and Erdogan (199lb) for mixed mode loading conditions.

The elastic constants of the materials used in the examples considered in this section
are given in Table 1. Materials 1 and 2 are fiber-reinforced composites (graphite-epoxy)
which are orthotropic and are widely used in structural applications. The remaining three
materials are isotropic; material 3 is steel, 4 is zirconia, and 5 is alumina. Table 2 shows the
material combinations used in two layer laminates considered in the numerical examples.
Note that, except for a 900 material rotation about the z-axis, materials 1and 2 are identical.
Thus the difference between the material pairs A and B is simply the crack orientation.
Material pairs C and D are included because of their relevance to surface cracking of
ceramic coatings on metal substrates.

Some sample results showing the stress intensity factors in two bonded layers con
taining an edge crack of depth L obtained from the plane strain elasticity solution are given
in Tables 3 and 4. Referring to (15), kIt and k 1b shown in these tables are related to the
shape functions 9t and 9b by

Table I. The elastic constants of materials used in the example (all in units of GPA)

Material I

Ex = 39
Ev = 30.6
E, = 6.4

Gxy = 19.7
G" = 4.5
G~, = 4.5
v xy = 0.447
v" = 0.275
vy, = 0.275

Material 2

Ex = 30.6
Ex = 39
E, = 6.4

GXY = 19.7
G" = 4.5
G~, = 4.5
vxy = 0.351
v" = 0.275
vy , = 0.275

Material 3

E=2oo
v = 0.26

Material 4

E = 137.9
v = 0.26

Material 5

E= 325
v = 0.3

Table 2. Material combinations used in the examples

Material Pair Layer I Layer 2

A 2 I
B I 2
C 5 3
D 4 3
I 3 3

Table 3. Normalized stress intensity factors in two bonded orthotropic layers containing an
edge crack and subjected to remote membrane loading No or bending M o under plane strain

conditions; Fig. I, u, = No/h, Ub = 6Mo/h2, Material Pair B

h 2/h, = 10 hJh, = I h 2/h, = 0.1

L/h, k,,/u,fi k'b/Ubfi klt/u,fi k'b/Ubfi k,,/u,fi k'b/Ubfi

0.001 l.l00 l.lOO l.loo 1.100 I.loo l.l00
0.1 1.060 1.003 I.l20 1.050 I.l92 1.004
0.2 1.000 0.984 1.l64 1.016 1.298 1.021
0.3 1.031 0.985 1.248 1.016 1.545 1.077
0.4 1.036 0.988 1.355 1.028 1.904 l.l78
0.5 1.054 0.993 1.492 1.055 2.436 1.344
0.6 1.073 1.000 1.664 1.097 3.254 1.609
0.7 1.094 1.007 1.881 l.l57 4.591 2.046
0.8 I.l17 1.016 2.160 1.243 6.949 2.803
0.9 I.l43 1.027 2.538 1.368 11.342 4.126
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Table 4. Same as Table 3, Material Pair D

h2/h, = 5 h2/h, = I h2/h, = 0.2

L/h, k,,/u,}L k'b/Ubji I k'b/Ub~L k,'/u,Ji k'b/Ub,jLk,,/u,v L
-'-"--

0.001 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215
0.1 1.119 1.074 1.132 1.070 1.161 1.052
0.2 1.114 1.072 1.171 1.044 1.278 1.045
0.3 1.113 1.049 1.234 1.036 1.464 1.081
0.4 1.Il3 1.027 1.319 1.043 1.734 1.158
0.5 1.114 1.007 1.426 1.062 2.119 1.284
0.6 1.114 0.987 1.556 1.091 2.677 1.480
0.7 1.112 0.967 1.709 1.130 3.522 1.785
0.8 1.109 0.944 1.882 1.174 4.874 2.277
0.9 1.104 0.914 2.058 1.212 7.147 3.093

N° J1 6M -
k,t(L) = h- hgt(s), k,h(L) =pO Jhgh(S), S = L/h. (25)

Results such as those given in Tables 3 and 4 are used to calculate the coefficients atk and
ahk of the shape functions defined in (23). Sample results for typical material pairs showing
these coefficients are given in Tables 5 and 6. After tabulating gt(s) and gh(S), a'k and ahk
are obtained through a curve-fitting process by expressing

n

gh(S) = J~L ahksk ,
o

g,(S) = J;±atks2k, h2/h, ~ 1,
o

(26)

(27)

(28)

Table 5. The coefficients a'k and abk for the shape functions 9, and 9b giving the stress intensity factor in a two
layer laminate subjected to remote membrane loading No or bending M ounder plane strain conditions [see eqns

(15) and (23)], orthotropic layers, Material Pairs A and B

h2/h, = 0.1

Material Pair A Material Pair B

h2/h, = I h2/h, = 10 h2/h, = I

k a'k abk a,k aM ark abk

0 1.103 1.107 1.019 1.033 1.101 1.102
I 6.172 -1.278 17.083 -2.537 6.637 -1.499
2 -13.434 6.195 24.226 19.186 -9.789 8.323
3 90.976 -7.717 64.081 -17.56
4 -196.82 5.208 -22.36 20.85
5
6

Table 6. Same as Table 5, Material Pairs C and D

1.107
5.837

-4.321
50.836

-116.96
180.96

·-87,04

1.102
-2.159
16.133

-53.66
108.8

-112.5
52.913

Material Pair C Material Pair D

h2/h, = 5 h2/h, = I h2/h,=5 h2/h, = I

k atk ahk a,k ahk a,k aM ark ahk

0 1.019 1.110 1.121 1.121 1.120 1.116 1.12 1.120
1 0.528 -0.901 7.786 -1.672 -0.333 -1.732 5.25 -1.189
2 15.81 8.284 -12.31 10.71 4.849 9.058 -8.925 4.565
3 -5.67 23.269 78.050 -26.47 -22.62 -42.95 66.168 -2.533
4 43.543 33.67 -183.23 -1.605
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One of the advantages of the technique described in this paper is that it can be used
to determine the stress intensity factors for surface cracks of any given profile. This, of
course, simplifies quite considerably the process of monitoring the subcritical crack growth
(Joseph and Erdogan, 1989). The results in this paper are, however, given for only two
crack profiles, namely semi-elliptic and rectangular. In the case of the semi-elliptic surface
crack L(y) is given by (see Fig. 1)

(29)

whereas in the rectangular crack L(y) = L o, -a < y < a.
Table 7 shows some results for the normalized stress intensity factors at the maximum

penetration point L = L o of a semi-elliptic surface crack in orthotropic laminates under
remote membrane loading Nxx = No or bending M xx =Mo. In this table the normalizing
stress intensity factors kOt and k Ob are the corresponding plane strain values obtained from
the edge crack solution and are the limits of kt(O) and kb(O) for a -+ 00. Thus, referring to
(25) kOt and k Ob may be obtained from

(30)

kt(y) and kb(y) shown in Table 7 and in the subsequent tables given in this paper are the
actual mode I stress intensity factors at the location y along the crack front due to the

Table 7. Normalized stress intensity factors at the center (L(O) = Lo) ofa semi-elliptic surface crack
in a two layer orthotropic laminate subjected to remote membrane loading No and bending Mo;

K, = k,(O)/ko" Kb = kb(O)/kOb

Lo/h, = 0.3 0.6 0.9

a/h K, Kb K, Kb K, Kb

Material Pair A, hz/hi = I

6 0.955 0.954 0.821 0.806 0.637 0.591
4 0.936 0.934 0.768 0.747 0.563 0.506
2 0.892 0.888 0.663 0.631 0.442 0.365
1 0.829 0.821 0.546 0.500 0.333 0.238
0.5 0.736 0.723 0.419 0.358 0.255 0.130
0.25 0.607 0.586 0.299 0.223 0.179 0.050

Material Pair B, hz/h, = I

6 0.961 0.960 0.840 0.824 0.648 Q.601
4 0.944 0.942 0.790 0.768 0.575 0.515
2 0.904 0.899 0.688 0.653 0.451 0.369
I 0.843 0.835 0.568 0.518 0.337 0.234
0.5 0.751 0.738 0.437 0.368 0.241 0.121
0.25 0.586 Q.601 0.312 0.225 0.169 0.038

Material Pair B, hz/h, = 10

6 0.996 0.996 0.988 0.992 0.968 0.981
4 0.995 0.996 0.984 0.989 0.956 0.974
2 0.993 0.994 0.973 0.981 0.928 0.955
1 0.990 0.991 0.957 0.969 0.885 0.924
0.5 0.984 0.986 0.927 0.946 0.813 0.872
0.25 0.971 0.975 0.872 0.905 0.691 0.794

Material Pair B, hz/h, = 0.1

6 0.862 0.852 0.503 0.432 0.137 0.034
4 0.817 0.802 0.430 0.345 0.112 0.007
2 0.722 0.699 0.320 0.215 0.078 -0.024
I 0.609 0.573 0.231 0.111 0.054 -0.041
0.5 0.477 0.428 0.163 0.033 0.037 -0.043
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external loads No and M o, respectively. Some surface crack results for isotropic material
pairs corresponding to a ceramic coating with a smaller (pair C) and a greater (pair D)
stiffness than that of the metal substrate are shown in Table 8. The results shown in this
table are self-explanatory and conform to expected physical trends and analytical limits.

Sample results showing the variation of the stress intensity factors along the crack
front in laminates with a semi-elliptic or a rectangular surface crack are given in Table 9.
Table 10 shows the influence of the thickness ratio h 2/h l as well as the crack depth L o on
the stress intensity factors in a ceramic-metal pair.

The effect of the crack length on the normalized stress intensity factors in a two layer
bonded orthotropic laminate (Material Pair B) containing a semi-elliptic surface crack is
shown in Figs 3 and 4 for membrane loading and bending, respectively. For reference,
similar results are also shown in Figs 5 and 6 for an isotropic plate (Material Pair I). The
normalizing stress intensity factors k Ot and k Ob used in these figures are the corresponding
plane strain values given by (30). The stress intensity factor k shown in these figures is
calculated at the maximum penetration point L = L o of the semi-elliptic surface crack and
is kt(O) or kb(O) shown in Tables 7-10. Comparison of the results given in Figs 3 and 5,
and 4 and 6 would show that the stress intensity factors in the particular orthotropic
material (pair B) under consideration are consistently lower than the values computed for
the homogeneous isotropic plate (Material Pair I). This may also be seen from Fig.1 where
the stress intensity factor is normalized with respect to a fixed value, k Ot = (N0/h).Jh I' Note
that in all cases, the limiting values of the calculated results are

lim [k(Lo)/kotJ = 1, lim [k(Lo)/kotl = O. (31 )
a~oo a~O

Table 8. Same as Table 7, Material Pairs C and D

La/h, = 0.3 0.6 0.9

a/h k, kh k, kh k, kh

Material Pair C, h2/h, = 1

6 0.972 0.974 0.897 0.900 0.747 0.739
4 0.960 0.964 0.857 0.861 0.674 0.663
2 0.931 0.938 0.767 0.775 0.538 0.523
1 0.887 0.899 0.653 0.669 0.404 0.390
0.5 0.818 0.843 0.520 0.549 0.281 0.273

Material Pair C, h2/h l = 5

6 1.003 1.003 0.995 0.996 0.979 0.979
4 1.001 1.002 0.991 0.991 0.968 0.967
2 0.998 0.999 0.979 0.978 0.940 0.938
I 0.994 0.994 0.961 0.960 0.900 0.896
0.5 0.986 0.986 0.932 0.930 0.840 0.834
0.25 0.972 0.972 0.883 0.879 0.750 0.740

Material Pair D, h2/h l = 1

6 0.959 0.962 0.856 0.863 0.707 0.706
4 0.942 0.946 0.804 0.813 0.627 0.624
2 0.899 0.909 0.693 0.709 0.483 0.481
I 0.836 0.855 0.563 0.591 0.348 0.353
0.5 0.747 0.782 0.424 0.468 0.262 0.246

Material Pair D, h2/h l = 5

6 0.993 0.993 0.981 0.981 0.965 0.964
4 0.991 0.991 0.974 0.973 0.950 0.949
2 0.986 0.985 0.954 0.954 0.913 0.911
1 0.977 0.977 0.926 0.925 0.862 0.858
0.5 0.944 0.964 0.883 0.882 0.791 0.784
0.25 0.940 0.939 0.815 0.813 0.689 0.677
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Table 9. Variation of stress intensity factor along the crack front in a two layer laminate containing
a semi-elliptic, or a rectangular surface crack and subjected to remote membrane loading No or

bending Mo; k, = k,(y)/ko" kb= kb(y)/kOb , Material Pair B, h2/h, = I, a/h = I

Lo/h l = 0.3 0.6 0.9

y/a k, kb k, kb k, kb

Semi-elliptic surface crack

0.0 0.843 0.835 0.568 0.518 0.337 0.234
0.1 0.838 0.831 0.566 0.516 0.336 0.235
0.2 0.827 0.821 0.559 0.515 0.333 0.237
0.3 0.814 0.812 0.553 0.514 0.328 0.243
0.4 0.803 0.809 0.547 0.521 0.324 0.253
0.5 0.793 0.808 0.542 0.532 0.320 0.267
0.6 0.774 0.801 0.532 0.542 0.314 0.283
0.7 0.732 0.771 0.512 0.544 0.304 0.299
0.8 0.667 0.717 0.483 0.545 0.292 0.318
0.9 0.616 0.685 0.463 0.557 0.284 0.351

Rectangular surface crack

0.0 0.891 0.876 0.627 0.563 0.376 0.258
0.1 0.886 0.874 0.622 0.563 0.373 0.257
0.2 0.875 0.870 0.610 0.562 0.364 0.257
0.3 0.866 0.863 0.598 0.556 0.355 0.254
0.4 0.863 0.857 0.589 0.540 0.348 0.241
0.5 0.862 0.848 0.581 0.515 0.342 0.222
0.6 0.850 0.831 0.561 0.485 0.329 0.199
0.7 0.814 0.799 0.518 0.450 0.301 0.179
0.8 0.752 0.745 0.453 0.398 0.261 0.151
0.9 0.662 0.635 0.380 0.289 0.222 0.086

Table 10. Same as Table 9, semi-elliptic surface crack in a laminate of Material Pair C, a/h = I

Lo/h, = 0.3 0.6 0.9

y/a k, kb k, kb k, kb

hJh, = 1

0.0 0.887 0.899 0.653 0.669 0.404 0.390
0.1 0.885 0.899 0.652 0.670 0.403 0.391
0.2 0.881 0.897 0.650 0.672 0.401 0.395
0.3 0.871 0.891 0.643 0.672 0.396 0.399
0.4 0.852 0.879 0.632 0.670 0.388 0.403
0.5 0.826 0.859 0.614 0.664 0.377 0.407
0.6 0.792 0.834 0.593 0.657 0.365 GAll
0.7 0.754 0.806 0.571 0.652 0.353 0.420
0.8 0.704 0.767 0.542 0.643 0.341 0.431
0.9 0.603 0.673 0.481 0.597 0.315 0.427

hJh, = 5

0.0 0.994 0.994 0.961 0.960 0.900 0.896
0.1 0.989 0.989 0.956 0.956 0.899 0.892
0.2 0.975 0.976 0.941 0.942 0.884 0.882
0.3 0.958 0.961 0.922 0.925 0.864 0.865
0.4 0.940 0.945 0.902 0.910 0.842 0.851
0.5 0.919 0.927 0.880 0.895 0.817 0.835
0.6 0.886 0.898 0.846 0.868 0.780 0.809
0.7 0.829 0.844 0.786 0.815 0.720 0.759
0.8 0.746 0.766 0.698 0.734 0.635 0.682
0.9 0.646 0.670 0.611 0.657 0.554 0.616
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Fig. 3. The normalized stress factor at the maximum penetration point of a semi-elliptic surface
crack in a two-layer orthotropic laminate under membrane loading No. k o = ko" k(Lo) = k,(O),

hi = h2, Material Pair B.
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Fig. 4. The normalized stress factor at the maximum penetration point of a semi-elliptic surface
crack in a two-layer orthotropic laminate under bending. ko = k ob , k(Lo) = kb(O), hi = h2, Material

Pair B.
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Fig. 5. Same as Fig. 3, Material Pair I.
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Fig. 6. Same as Fig. 4, Material Pair I.
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Fig. 7. Comparison of normalized stress intensity factors at the maximum penetration point of a
semi-elliptic surface crack in a two·layer laminate subjected to tension for Materials B and [.

k o = (No/h).[h;, hI = h2, k(Lo) = k,(O).
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Fig. 8. The normalized stress intensity factor at the maximum penetration point of a semi-elliptic
surface crack in a two-layer orthotropic laminate under membrane loading No, k(Lo) = k,(O),

k o = (No/h);;;;:, h, = 0.1 h2, Material Pair B.
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Finally Fig. 8 shows the normalized stress intensity factor at y = 0 for an orthotropic
laminate having a thickness ratio h2/h I = 10 and containing a semi-elliptic surface crack.
Note that for a/h > I the aspect ratio 2a/Lo of the cracks in these examples is very large
and as a/h increases k,(O) rapidly converges to its asymptotic value k o/. More extensive
results giving the stress intensity factors for surface cracks in orthotropic and isotropic
laminates may be found in Wu (1990).
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